2023 Conference Programme

Subpage Hero

Subpage Hero

      

Loading

Improving with MLOps: 3 Steps To Operationalize at Scale

11 Oct 2023
Artificial Intelligence & Machine Learning Theatre

The rapid integration of model-based machine learning and AI technologies within large enterprises highlights the need for effective deployment of these models in production to maximize their advantages. However, achieving this on a large scale presents novel challenges. The concept of MLOps emerges as a solution, encompassing the standardization and optimization of the machine learning lifecycle management process. Unlike a mere adaptation of DevOps and DataOps principles, MLOps addresses the distinctive complexities of managing machine learning models in real-world settings.

During this session, our speaker Alex Aung, Director Sales Engineer underscores three pivotal reasons for the intricacies in scaling machine learning lifecycles: the presence of numerous dependencies stemming from evolving data and shifting business requirements, the diversity in language and tools among stakeholders encompassing business, data science, and IT teams, and the contrast between the specialized skills of data scientists in model creation and evaluation and the demands of software and application development.

Sponsors

Keynote Theatre Sponsor

AI, Machine Learning & Advanced Analytics Theatre Sponsor


 

VIP Lounge Sponsor

VIP Lunch Sponsors


 

Gold Sponsors

Silver Sponsors

Bronze Sponsors

Exhibitors

Partners

Data & AI Learning Partner

Preferred Learning Partner

Community Partner

AI Insights Partner

Association Partners

Event Partners

Media Partners

Official News Release Distributor Partner

Official Training Partner

Knowledge Partner

frost & sullivan

 

Official Partner Hotel

Held In

Supported By

Singapore MICE Sustainability Certification - BRONZE